Bauhaus-Universität Weimar

Speaker: Julia Tschetwertak M.Sc.

Does the sequence matter?

Investigating the impact of the order of design decisions on the life cycle performance

Design Strategies

Design strategies by Rittel

decision-making (MD) process

Organisers: CONSTRUCTION INDUSTRY COUNCIL

HKGBC

International Co-owners:

Global Alliance

Buildings and

Design strategies by Rittel

multi-stage

process

decision-making

Multi-stage decision-making (MD) process

Research Topic

Does the sequence matter?

Changing the stage order within the MD Tree

Case Study

Parametric Modeling

1. Model Generation

2. Model Analysis

Life Cycle Performance (LCP)

... is a measure of the environmental impact of buildings during their whole lifespan

Using the LCA tool by Hollberg (2016)

3. Optimization

Using Evolutionary Algorithms

4. Automated MD Tree Creation

Sequences

Fitness Functions

Sequence 1

Fitness = Custom fitness function

Fitness = LCP

Results

Performance	Average Sequence 1	Average Sequence 2	Difference
LCP [WBP]	0.724	0.750	+ 3.6 %
Distance [m]	4.52	10.27	+ 127.2 %
S/V [m ⁻¹]	0.352	0.352	±0%
Solar radiation [kWh/m²]	370.477	399.170	+ 7.7 %

International Co-owners:

Sustainable Buildings

Global Alliance for Buildings and

Organisers:

CONSTRUCTION INDUSTRY COUNCIL

HKGBC

Performance	Average Sequence 1	Average Sequence 2	Difference
LCP [WBP]	0.724	0.750	+ 3.6 %
Distance [m]	4.52	10.27	+ 127.2 %
S/V [m ⁻¹]	0.352	0.352	±0%
Solar radiation [kWh/m²]	370.477	399.170	+ 7.7 %

International Co-owners:

Sustainable Buildings

Global Alliance for Buildings and

Organisers:

CONSTRUCTION INDUSTRY COUNCIL

HKGBC

WORLD

WORLD

Performance	Average Sequence 1	Average Sequence 2	Difference		
LCP [WBP]	0.724	0.750	+ 3.6 %		
Distance [m]	4.52	10.27	+ 127.2 %		
Corganisers: のでするのです。 Example Buit Environment Conforences	RUCTION RY COUNCIL 業適合 HKGBC	International Co-own	ETS: Sustainable Buildings and Climate Initiative Former Processor Francesco		

S/V [m ⁻¹]	0.352	0.352	±0%
Solar radiation [kWh/m²]	370.477	399.170	+ 7.7 %

Conclusion

- Defining an appropriate sequence for the MD process is highly dependent on the individual design problem.
- A custom fitness function is needed if crucial information for the main design evaluation method (EM) is not available at a design stage where optimization is to be conducted.
- Establishing custom fitness functions can be complex and create worse solutions.
- The custom fitness function needs to be tailored towards the EM while taking into account the components involved and their relationships.
- Conducting optimization after obtaining all crucial information for the EM is beneficial because from this point the main design evaluation method EM can be used as the fitness function.

References

Hollberg, A., 2016. A parametric method for building design optimization based on Life Cycle Assessment. Dissertation, Weimar: Bauhaus University Weimar.

Pohlheim, H., 2000. Evolutionäre Algorithmen. Berlin: Springer-Verlag.

Rittel, H. W. J., 1992. Planen Entwerfen Design. Ausgewählte Schriften zu Theorie und Methodik. Stuttgart: W. Kohlhammer GmbH.

Thank you

