# Research of Urban Heat Island (UHI) in Shenzhen

based on Climatic Design and Urban Planning Strategies

presented by: Yu Wen Juan, Jenny Ronald Lu & Partners















 $\begin{array}{l} 41_{years} \\ 5_{offices} \\ 600_{+\,staff} \\ 51^{st}_{in\,world} \end{array}$ 



# Contest

Introduction UHI Issue of Shenzhen Urban Planning Strategies to Control UHI Conclusion



# Introduction



# GEOGRAPHY & CLIMATE CONDITION OF SHENZHEN

#### Topography

| Southeast part | Hilly with mountains                             |
|----------------|--------------------------------------------------|
| Northwest part | Low along the west coast                         |
| Land use       | Cropland, woodland, built up area, water body    |
| 4 major River  | Maozhou, Guanlan, Longgang and<br>Pingshan River |

#### Climate

Hot summer and warm winter climate zone

Humid subtropical marine monsoon climate

| Annual mean                  | 22.55°C                                |
|------------------------------|----------------------------------------|
| temperature                  |                                        |
| Monthly averages temperature | 11.7°C in January to<br>32.2°C in July |
| Sunshine                     | 1933 hours per year                    |



Geographical environment of Shenzhen (Source: Mapbox)



|                             |                 |                 | Climate         | data for         | Shenzhe         | en (1971-20       | 100)              |                   |                  |                 |                 |                 | hide                |
|-----------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|-------------------|------------------|-----------------|-----------------|-----------------|---------------------|
| Month                       | Jan             | Feb             | Mar             | Apr              | May             | Jun               | Jul               | Aug               | Sep              | Oct             | Nov             | Dec             | Year                |
| Record high °C ("F)         | 29.1<br>(84.4)  | 28.9<br>(84)    | 32.0<br>(89.6)  | 34.0<br>(93.2)   | 35.8<br>(96.4)  | 38.9<br>(93.4)    | 38.7<br>(101.7)   | 37.1<br>(95.0)    | 38.9<br>(90.4)   | 35.2<br>(95.4)  | 33.1<br>(91.6)  | 29.8<br>(85.6)  | 38.7<br>(101.7)     |
| Average high °C (°F)        | 19.7<br>(67.5)  | 19.7<br>(67.5)  | 22.7<br>(72.9)  | 26.3<br>(79.3)   | 29.3<br>(84.7)  | 31.1<br>(88)      | 32.2<br>(90)      | 32.0<br>(89.6)    | 31.2<br>(68.2)   | 28.9<br>(84)    | 25 1<br>(77.2)  | 21.5<br>(70.7)  | 26.6<br>(80.0)      |
| Daily mean ℃ (°F)           | 14.9<br>(58.8)  | 15.5<br>(59.9)  | 18.7<br>(65.7)  | 22.5<br>(72.5)   | 25.7<br>(78.3)  | 27.8<br>(82)      | 28.6<br>(83.5)    | 28.2<br>(82.8)    | 27 2<br>(81)     | 24.7<br>(76.5)  | 20.4<br>(88.7)  | 16.4<br>(61.5)  | 22.55<br>(72.6)     |
| Average low °C (°F)         | 11.7<br>(53.1)  | 12.7<br>(54.9)  | 16.0<br>(60.8)  | 19.9<br>(67.8)   | 23.2<br>(73.8)  | 25.2<br>(77.4)    | 25.7<br>(78.3)    | 25.5<br>(77.9)    | 24.3<br>(75.7)   | 21.6<br>(70.9)  | 17.1<br>(62.8)  | 12.9<br>(55.2)  | 19.6<br>(67.4)      |
| Record low °C (°F)          | 0.9<br>(33.6)   | 0.2<br>(32.4)   | 3.4<br>(38.1)   | 8.7<br>(47.7)    | 14.8<br>(58.6)  | 19.0<br>(66.2)    | 20.0<br>(68)      | 21.1<br>(70)      | 16.9<br>(62.4)   | 9.3<br>(48.7)   | 4.9<br>(40.8)   | 1.7<br>(35.1)   | 0.2<br>(32.4)       |
| Rainfall mm (inches)        | 29.8<br>(1.173) | 44.1<br>(1.736) | 67.5<br>(2.657) | 173.6<br>(6.835) | 238.5<br>(9.39) | 296.4<br>(11.669) | 339.3<br>(13.358) | 368.0<br>(14.488) | 238.2<br>(9.378) | 99.4<br>(3.913) | 37.4<br>(1.472) | 34.2<br>(1.346) | 1,966.3<br>(77,413) |
| Avg. rainy days (± 0.1 mm)  | 7.07            | 10.07           | 10.77           | 12.73            | 15.60           | 18.47             | 17.00             | 18.30             | 14.83            | 7.63            | 5.63            | 5.97            | 144.07              |
| % humidity                  | 71.7            | 76.8            | 79.5            | 81.0             | 81.7            | \$1.8             | 80.5              | 81.8              | 78.8             | 72.4            | 68.4            | 67.1            | 76.8                |
| Mean monthly sunshine hours | 147.9           | 95.8            | 101.4           | 110.2            | 149.8           | 173.6             | 220.0             | 188.6             | 181.2            | 199.5           | 184.3           | 178.5           | 1.933.8             |
| Percent possible sunshine   | 44              | 31              | 27              | 29               | 37              | 43                | 53                | 47                | 49               | 55              | 56              | 53              | 43.7                |
|                             |                 |                 | 0.0             | uma: Chevr       | these Rilation  | unlanine! Due     | 101610            |                   |                  |                 |                 |                 |                     |

Climate data for Shenzhen (Source: Weather Spark & China Meteorological Administration)

# URBANIZATION DEVELOPMENT OF SHENZHEN

Population (1979 – 2010)

| 1979 | 0.31 million  |
|------|---------------|
| 2001 | 4.69 million  |
| 2010 | 10.37 million |

#### Urbanization (1990 – 2005)

| Built up space | from 0.63% to 33.42%                 |
|----------------|--------------------------------------|
| Forest         | ✓ decreased<br>from 38.71% to 29.96% |
| Water bodies   | decreased<br>from 7.41% to 5.64%     |
| Wetland        | ↓ decreased<br>0.21%                 |



Urbanization Pattern in Shenzhen (Che, et al., 2011)



# **UHI Issue of Shenzhen**



# SPECIAL DISTRIBUTION OF UHI IN SHENZHEN

### **Temperature Change**

Keeping increasing during the past 50 years and reaching 28 °C in 2005.

Temperature in the city center is approximately 3 °C higher than the suburban area.

### **Special Distribution**

#### Daytime

Nanshan, Futian and western Bao'an district with temperature higher than 33 °C.

Other part with temperature between 31 °C to 33 °C.

#### Nighttime

City center with high density in western Nanshan, western Luohu and western Bao'an district with temperature more than 27 °C.





Air Temperature during daytime and nighttime (ZHANG, et al., 2011)



# THE FORMATION OF UHI IN SHENZHEN – LAND USE CHANGE

#### **Urban Land Expansion**

UHI spatial distribution is highly match the urban land expansion pattern.

Constructed land will increase the surface roughness and have relatively high surface temperature thus generate UHI in this areas.

### **Reduction of Green Space**

Land cover and landscape patterns are the two main factors that influence the LST.

The higher vegetation fraction areas the lower surface temperature.

The higher value of impervious surface areas the higher the surface temperature due to the cooling effect of the vegetation.



Vegetation fraction (VF) and impervious surface areas (ISA) in Shenzhen (Xie, et al., 2013)



# THE FORMATION OF UHI IN SHENZHEN – HIGH DENSITY BUILT UP AREAS

### Lack of Greenery

With rapid urbanization and urban expansion, Shenzhen is toward a high rise and high density city like Hong Kong.

Street network is closely linked to each other without space for urban greenery.

Planting of greenery cannot catch up with the urban construction.

Existing trees planted along the streets are too small to effectively cool down the district.

#### **Poor Natural Ventilation**

Wind speed will decrease from 2.7m/s to 1.2m/s when entering the urban districts. Low wind speed with only 1m/s or even create stagnate zones in most areas.





# THE FORMATION OF UHI IN SHENZHEN – REDUCTION OF WATER BODIES

#### **Decrease of River Network**

The river network of Shenzhen has toward a decrease from 1980 to 2005.

River network complexity is decreased from 36.1 to 31.6.

The number and length of the river are also decrease.

The total length of the rivers in Shenzhen shortened 355.4km.

Water bodies have been influenced by the urban development and the cooling effect of the rivers are also reduced.

In this case, the surface temperature is keep increasing with the decrease of water bodies therefore generate the UHI effect.





River Network Change in Shenzhen (Zhou, et al., 2010)



# THE FORMATION OF UHI IN SHENZHEN – ANTHROPOGENIC HEAT

#### **Population Density**

The UHI distribution pattern shows that the strongest UHI areas appear with high population density.

Human's activities will significant increasing the energy consumption thus generate unwanted heat of those regions.

#### **Emission of The Private Cars**

The total number of motor vehicles and private car are increasing.

Reaching 2.72 million in 2014 with the annual growth rate of 16.2%.

The vehicle density is 440 per km which is much higher than the international standard.



#### Population Density of Shenzhen

(Zhang, et al., 2011)



Motor Vehicle and Private Car Tendency in Shenzhen (Zacharias & Tang, 2010)



# Urban Planning Strategies to Control UHI



# **VENTILATION CORRIDORS**

## **City Scale**

Follow the dominate wind direction of Shenzhen, the wind path should be arranged northeast to southwest and northwest to southeast.

Wind corridors may follow the major roads and green lands and link to each other.

Be long and width enough to effectively ventilate the whole community.

#### **District Scale**

A new district known as the Low Carbon City locates in Pingdi district represent the future urban planning model of Shenzhen.

Wind corridors are designed according to the dominate wind direction to reduce UHI effect.



Ventilation corridor on city scale of Shenzhen (By author)



Ventilation corridor on district scale (XU, 2013)



# LINKAGE OF OPEN SPACE AND INCREASE GREENERY

#### **City Scale**

Greenway has been built up which went through the whole city to increase greenery and bring wind into the urban construction areas.

Surrounding urban areas can be benefit from the greenway and reduce the temperature.

### **District Scale**

Buildings setback to widen the streets.

Open spaces are design within the high density built up areas.

Trees are planting at the pedestrian level.

Green belts are closely linked with the surrounding nature land to make sure the cooling effect.

In some really high dense areas, vertical planting and roof gardens are provided



Greenway design in Shenzhen (Source: http://www.google.com.hk)



# **BUILDING DESIGN TOWARD** SUSTAINABLE URBAN PLANNING

## **Building Orientation and Disposition**

Building should be oriented to face the prevailing wind.

The length of building façade along with the prevailing wind should be longer to reduce stagnant zone behind the building.

## **Building Height**

A mix of low-rise and high-rise building will benefit the wind movement.

Increase the building height of the behind building along with the prevailing wind direction to enhance the ventilation.

## **Building Permeability**

Better ventilation pattern can be achieved by creating gaps and openings on the buildings.

**Building Height and Podium Separation** (HK Planning Department, 2014)



**Prevailing Wind** 





# **GREEN TRANSPORTATION SYSTEM**

#### Green Subway System Electric Vehicles Public Transportation

The number of private cars can be greatly reduce therefore the anthropogenic heat generate by cars can also decrease, thus make great contribution to the control of urban heat island effect in Shenzhen.



Green transportation (Source: https://www.google.com.hk)



# Conclusion



# **PLANNING FOR FUTURE**

#### Current

Land use change during the urbanization process

High density built up areas

**Reduction of water bodies** 

Anthropogenic heat generated by human activities

#### **Future**

Build up ventilation corridors

Linkage of open space and increase greenery

Building design toward sustainable urban planning

Green transportation system



php?pid=12310)







- [1] Chen, J., Chang, K. T., Karacsonyi, D., & Zhang, X. (2014). Comparing Urban Land Expansion and its Driving Factors in Shenzhen and Dongguan, China. Habitat International, 43, 61-71.
- [2] Che, X., English, A., Lu, J., & Chen, Y. D. (2011). Improving the Effectiveness of Planning EIA (PEIA) in China: Integrating Planning and Assessment During the Preparation of Shenzhen's Master Urban Plan. Environmental Impact Assessment Review, 31(6), 561-571.
- [3] Huasheng, S. (1991). Urban Development in Shenzhen SEZ. Habitat International, 15(3), 25-31.
- [4] Lin, Mengdie. (2011). Research on Thermal Environment Improve Strategy in Heat Island District of Shenzhen Futian Based on Computational Fluid Dynamics. Shenzhen Graduate School.
- [5] Ng, M. K. (2003). Shenzhen. Cities, 20(6), 429-441.
- [6] Song, B., & Somasundaram, S. (2009). Country Report on Building Energy Codes in China. Springfield, VA: Pacific Northwest National Laboratory.
- [7] Shi, P., & Yu, D. (2014). Assessing Urban Environmental Resources and Services of Shenzhen, China: A Landscape-based Approach for Urban Planning and Sustainability. Landscape and Urban Planning, 125, 290-297.
- [8] Tianhong, L., Wenkai, L., & Zhenghan, Q. (2010). Variations in Ecosystem Service Value in Response to Land Use Changes in Shenzhen. Ecological Economics, 69(7), 1427-1435.
- [9] Wang, H., Shi, S., & Rao, X. (2013). A Study of Urban Density in Shenzhen.
- [10] Xie, M., Wang, Y., Chang, Q., Fu, M., & Ye, M. (2013). Assessment of Landscape Patterns Affecting Land Surface Temperature in Different Biophysical Gradients in Shenzhen, China. Urban Ecosystems, 16(4), 871-886.
- [11] Xie, M., Wang, Y., Fu, M., & Zhang, D. (2013). Pattern Dynamics of Thermal-environment Effect During Urbanization: A Case Study in Shenzhen City, China. Chinese Geographical Science, 23(1), 101-112.
- [12] ZHANG, X. L., Lei, L., Yan, D., JIANG, Y., Xiaoyi, F., Mei, L., Yuan zhao & Yujie, B. (2011). A Numerical Study on the Influences of Urban Planning and Construction on the Summer Urban Heat Island in the Metropolis of Shenzhen. Journal of Tropical Meteorology, 17(4).
- [13] Zhou, H., Shi, P., Wang, J. A., Yu, D., & Gao, L. (2010). Rapid Urbanization and Implications for River Ecological Services Restoration: Case Study in Shenzhen, China. Journal of Urban Planning and Development, 137(2), 121-132.
- [14] Zhang Lijie, Li Lei, Jiang Yin, Tan Ming Yan & Li Hui. (2011). A Study of the Urban Heat Island in Shenzhen Based on Data from Automatic Weather Stations [J]. Climatic and Environmental Research (in Chinese), 16(4): 497-486.
- [15] Zacharias, J., & Tang, Y. (2010). Restructuring and Repositioning Shenzhen, China's New Mega City. Progress in Planning, 73(4), 209-249.



