WORLDSBE Conference 2017 Hong Kong 5-7 June 2017

Research and Development of Noise Mitigation Measures for Public Housing Development in Hong Kong

Mr. John HO Chief Civil Engineer/1 Hong Kong Housing Authority

John H.L. HO

Chief Civil Engineer/1 Hong Kong Housing Authority (HKHA)

To **supervise** the Civil Engineering Section of Housing Department

To oversee all work covering planning, design and contract management of **infrastructure works** to support the public housing development programme as well as managing the **research and development studies** in respect to **noise mitigation measures**.

Introduction

Introduction

- Hong Kong in high density living environment.
- Close proximity to heavily trafficked roads or other noise sources.
- HKHA have applied a host of noise mitigation measures to reduce the impact and nuisance & to create a healthy living environment to our residents.

Introduction

Environmental Assessment Study (EAS)

to demonstrate compliance to EPD on the noise limit under-

 Road traffic noise limit under Hong Kong Planning Standards and Guidelines (HKPSG)

• Fixed and railway noise limit under Noise Control Ordinance Cap.400

Specific Design to Tackle Noise Issues

General Principle of Noise Mitigation Measures

Principles of Mitigation Measures

At Source

Low noise road surfacing

At Propagation Path

At Receiver End

Noise Barrier

Building setback

Special Noise Cover for Public Transport Interchange (Mitigation Measures at Source)

Specific Building Block Design (Mitigation Measures at Receiver End and on Propagation Path)

Specific Building Block Design (Mitigation Measures at Receiver End and on **Propagation Path**)

Long Ching Estate, Yuen Long

Optimized Block Disposition

2

Single aspect building (SAB) design

SAB provide screening for other noisesensitive block

No. of Blocks

Innovative Noise Mitigation Measures developed for

Public Housing Development in Hong Kong

Acoustic Window

Designed in 2009, and completed in early 2017

Acoustic Window

Organisers:

DUSTRUCTION

Safe and durable

• Window frame installed with precast facade in factory

International Co-owners:

山 iiSBE

Acoustic Window On-site tests with twin mock-up flats

Mockup Flat - Layout Plan

- To evaluate the sound attenuation of acoustic window over standard window for modular flat
- Using actual window prototype and under insitu noise situation.

USEP and Climate Initiative

• About 10 measurement points at interior of modular flat give representative results.

Acoustic Window

Acoustic Window

Panoramic View of the Harbour

Preliminary Design - ARC SCREEN

Arc-screen - Full scale Mock up at Dongguan

About 10,000 measurement readings were taken. Measurement points were placed inside and outside windows and at different height from floor.

Scenario 1 - Unmitigated Scenario 2 - Concrete

Scenario 4 - Concrete with absorptive surface Scenario 5 – Polymethyl methacrylate (PMMA) parapet with gap

International Co-owners:

Scenario 3 – Concrete without gap

Scenario 6 – Polymethyl methacrylate (PMMA) parapet, ceiling & side walls with absorptive surface

with gap

Flat with Acoustic Balcony

No. of flats with acoustic balcony = 276 (19% of development)

Noise Monitoring at Building Completion

Organisers:

International Co-owners:

Acoustic Window (San Po Kong Public Housing Development)

Noise attenuation max. 8 dB(A)

1st Generation **Acoustic Balcony** (Wing Cheong Estate)

Noise attenuation ~ 2 to 6 dB(A)

Limtation Only for Wing Cheong Estate (Site specific)

Enhanced **Acoustic Balcony** (Full scale mock-up at a vacant school at Yue Wan Estate)

Better Noise Attenuation ~6 to 10dB(A)*

Better Ventilation Sufficient air flow.

Prescriptive approach for window calculation. International Co-owne

NSTRUCTION

Noise Mitigation Component

<u> Main Features –</u>

- **1.** Sliding screen in front of balcony door
- **2.** *Plenum configuration of balcony for better air flow* (concept of acoustic window).

Optional Features to further reduce noise-

- 3. Acoustic panel at wall and ceiling
- 4. Inclined panel outside the parapet
- 5. Acoustic windows at living areas

Sliding Screen

Acoustic Balcony

Inclined Panel

International Co-owners:

Acoustic Windows

Verification of Noise Performance by Full Scale Mockup

Prototypes (including features ① to ⑤) inside an existing vacant school building for on-site noise measurement

Balcony

Type A Flat

Balcony

Type C Flat **Mock-up Flats with Acoustic Balcony** at different levels

International Co-owners:

Testing Data Analysis

Site Measurement inside flat ONSTRUCTION DUSTRY COUNCI nent Conform

Max Noise Reduction (for balcony with the optional features) around 10 dB(A)

Interpretation of noise results

Facade

Doo

One-third Octave Band Centre Frequency (Hz)

Point

3

4

nner

window pars

5.12

4.12

3.12

212

212

212

1.0

1.1

1.0

ப் iiSBE

Further simulations for other flat types

The major difference between old 1/2P (3/4P) and the new 1/2P (3/4P) is the depth of the balcon The room constants (RC) of the two rooms are the same basically. So, the correction for RIL is thus mainly due to the balcony configuration and the outdoor opening size of the balcony. The base unit window configurations are unchanged.

The noise reduction across the plenum chamber attached to an enclosure of room constant BC car be approximated by

 $NR = -10log_{10}(S_{indoor}(Qcos(\theta)/(4\pi d^2)+1/R_p)) - 10log_{10}(S_{outdoor}/RC) + Constant,$

Indoor Microphones setup 1000 Distance in metres from Side wall Floor 10001.4, right-hand-side 1.45 wall 1.0, right-hand-side 1 30 llaw 1.4, right-hand-side 1.65 wall 1000 1.0, right-hand-side 20 wall 2.3, left-hand-side 1.00 WHIL 1/F 1.0, left-hand-side 1.65 wall 1.1, right hand side 40 wall 2.2, left-hand-side wall 1.0, left-hand-side wall

Collaboration with Stakeholders

Driving Innovation through collaboration with stakeholders and expertise

Conclusion

Challenge for developer/ designer in hyper density urban (Hong Kong)

Conclusion

We uphold our 4Cs Core Values –

Caring, Customer-focused, Creative, Committed to

build a sustainable community in a

high density urban environment

Thank you

For details of Hong Kong Housing Authority's Sustainability Initiatives, please visit -

English Version

http://www.housingauthority.gov.hk/hdw/video/videoshell_Environmental_corporate_Eng.html

Putonghua Version

http://www.housingauthority.gov.hk/hdw/video/videoshell_Environmental_corporate_Mand.html

Cantonese Version

http://www.housingauthority.gov.hk/hdw/video/videoshell_Environmental_corporate_Cant.html

Organisers:

International Co-owners:

