

Creative he World

Short-Term Load Forecasting with Predicted Weather Data

ZHU Guangya, Tin Tai Chow, Norman TSE

Speaker: ZHU Guangya

PhD student, City University of Hong Kong

Supervisor: Tin Tai Chow

Contract Research Grants of the City University of Hong Kong (Project no. 9231136)

Organisers:

CONTENTS

1. Introduction

Energy consumption in building sector Load forecasting Benefits

Prediction Model Influential factors

Local Perspective

64%

<單位:太焦耳 Unit : Terajoule >

Source: EMSD (Electrical & Mechanical Services Department) Hong Kong Energy End-use Data 2016

- Clean Energy System Design
- Smart Grid and Smart Building

International Co-owners:

山 iiSBE

100MW

DOMW

enbala

SUPPLY

DEMAND

6

Source: N. Fumo, A review on the basics of building energy estimation, Renewable and Sustainable Energy Reviews, 2014 (31): 53-60.

Artificial Neural Network

Source: M.C. Leung et al. The use of occupancy space electrical power demand in building cooling load prediction. Energy and Buildings, (2012) 55: 151-163.

2. Critical problem and solution

Forecasting methods

Weather Forecasting

General Data-driven Forecasting Procedure

General Data-driven Forecasting Procedure

Typical Daily Temperature and RH Profile

Temperature Prediction

pressure

Step1: Calculate water vapor saturation pressure Step2: Generate reference water vapor pressure Pc

Step3: Calculate relative humidity (RH)

 $p_{qb} = 610 \times 10^{\frac{7.45T}{235+T}}$ where T is the temperature, p_{qb} is the water vapor saturation pressure

ORLD BEELING Built Environment Conforence

The estimation of Pc can be calculated from the equations below: $P1 = \varphi_{day} \times p_{qbmax}$ $P2 = \varphi_{night} \times p_{qbmin}$ $Pc = \frac{P1+P2}{2}$ where ϕ_{day} =daytime relative humidity, ϕ_{night} =relative humidity at night, p_{qbmax} =daily Maximum water vapor saturation pressure, p_{qbmin} =daily Minimum saturation

Because of that Hong Kong is Coastal cities, assuming the reference water vapor pressure was relatively stable within a day

$$\varphi = \frac{Pc}{p_{qb}} \times 100\%$$

International Co-owners:

Sustainable Buildings and Climate Initiative 18

3. Case study

Study CaseRaw Data3 ForecastingForecastingIntroductionCollectionMethodsResults

• University academic buildings

 Daily open hour : Weekday 07:00-23:00
Weekend 07:00-18:00

• Cooling is also needed in the winter season

SBE SERIES

International Co-owners:

21

Raw Data Collection

		SCHEDULE A	
Weather Data	Historical Record	Schedule	Time Period
The collected weather recorded data was provided by Hong Kong observatory. The weather data include dry-bulb temperature, humidity, global solar radiation, rainfall, clearness of sky, cloud condition and wind	The historical energy consumption data of study case is hourly recorded by the building management system	The building and sub-system information are provided by CDFO (Campus development and facility office)	The data cover the period of the whole year 2014 and 2015

Organisers: CONSTRUCTION INDUSTRY COUNCIL 建造業議會

22

- 1. Follow the general data driven prediction procedure
- 2. Only use public information

- 1. Prepare raw data
- 2. Filter less importance factors
- 3. Regroup data
- 4. Develop prediction model

Organisers:

5. Forecaster application and generate report

ORLD

Load Cloud Chart

27

Alliance

diag's and

28

luildings and

a. Weather independent ANN model

b. Weather dependent ANN model

Case stu Method 3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 hour

NONSTRUCTION NDUSTRY COUNCIL 主造業議會 HKGBC International Co-owners:

32

diag's and

4. Conclusion

The input data filtering and regrouping can improve energy consumption forecasting accuracy;

The proposed weather data prediction method can be applied in load forecasting;

Provide different methods to meet the various purposes about building load forecasting is practical.

Thank you

If you need further discussion, please contact me:

+852-65879751

zhuguangya828@yahoo.com

Organisers:

