# Optimizing Energy Efficiency for a High Rise Office Tower in Tropics

Driving Running Cost Down > 70% in a High-Rise

Presented by: Yong Kong, nyk@bezaire.com.my Lead Author: CK Tang, ck@ckatwork.com

International Co-owners

UNE Sustainable Buildings





# Background

- 27 office levels
- 8 levels of podium
- Completion in Mid-2017
- Located in Johor Bharu, Malaysia. Just north of Singapore.
- Multi-tenanted office tower.
- Owners pay running cost for whole building Air-Conditioning and Common Area spaces.
- Building Energy Simulation Study Conducted to optimize building.

International Co-owners:

# Study Concept

- Energy consumed by the Tower over 48 different simulation cases
- Analyze energy (BEI) and air conditioning Peak Cooling Load
- Each case brings improvement to passive and active systems



# **Computational Simulation Tool**

- Integrated Environment Solutions Virtual Environment (IES VE) software
- Simulate sun position, cloud cover, shading, internal heat gain and M&E systems.
- Dynamic simulation model = Time varying model.



# **Simulation Cases and Results**

|      | Descriptions                                          | 100% Occupancy                    |                 |                                       |                                         |                                          |                           |
|------|-------------------------------------------------------|-----------------------------------|-----------------|---------------------------------------|-----------------------------------------|------------------------------------------|---------------------------|
| Case |                                                       | Total Energy<br>per year<br>(MWh) | BEI<br>(kWh/m2) | Total Energy<br>Cost per year<br>(RM) | Energy per<br>year by<br>Owner<br>(MWh) | Energy Cost<br>per year by<br>Owner (RM) | Peak Cooling<br>Load (kW) |
| 1    | Base Building                                         | 8,146.80                          | 212.08          | 2,851,379                             | 5,717.62                                | 2,001,168                                | 7,394.06                  |
| 2    | Daylight Implementation in Offices (3 meter Depth)    | 7,706.85                          | 200.63          | 2,697,396                             | 5,586.20                                | 1,955,170                                | 7,260.99                  |
| 3    | Daylight Implementation in Offices (4 meter Depth)    | 7,576.80                          | 197.24          | 2,651,882                             | 5,547.28                                | 1,941,548                                | 7,220.21                  |
| 4    | Daylight Implementation in Offices (5 meter Depth)    | 7,463.13                          | 194.28          | 2,612,097                             | 5,513.00                                | 1,929,550                                | 7,182.19                  |
| 5    | Roof Insulation (No insulation to 50mm insulation)    | 7,430.69                          | 193.44          | 2,600,742                             | 5,480.56                                | 1,918,195                                | 7,148.49                  |
| 6    | Roof Insulation (50mm insulation to 100mm insulation) | 7,430.88                          | 193.44          | 2,600,808                             | 5,480.74                                | 1,918,261                                | 7,152.80                  |
| 7    | Wall insulation (No insulation to 25mm rockwool)      | 7,354.56                          | 191.46          | 2,574,096                             | 5,404.42                                | 1,891,548                                | 7,012.29                  |
| 8    | Glazing (All glass from conventional to Low-E)        | 6,858.71                          | 178.55          | 2,400,550                             | 4,908.58                                | 1,718,002                                | 6,239.73                  |
| 9    | Glazing (Light coloured glass to Double Glz Low-E)    | 6,765.74                          | 176.13          | 2,368,010                             | 4,815.61                                | 1,685,462                                | 6,141.19                  |





Organisers:









# Simulation Cases and Results Building Energy Intensity (BEI) of each Case

CONSTRUCTION

NDUSTRY COUNCIL

浩業議會

HKGBC



Sustainable Buildings UNEP Sustainable Buildings and Climate Initiative

**MISBE** 

al Alliance

A .....

WORLD Sustainable Buit Environment Conform

# Simulation Cases and Results

Peak Cooling Load of each Case

7





### **Case 1: Base Building**

| Construction Material             |                 |  |  |  |  |
|-----------------------------------|-----------------|--|--|--|--|
| Typical Flat Roof – No insulation | U-value = 3.759 |  |  |  |  |
| Standard Glazing                  | U-value = 4.825 |  |  |  |  |
| Standard External Wall            | U-value = 1.794 |  |  |  |  |
|                                   |                 |  |  |  |  |
| Lighting Power Density (MS 1525)  |                 |  |  |  |  |
| Lobby / Walkway                   | 20 W/m2         |  |  |  |  |
| Office                            | 15 W/m2         |  |  |  |  |
| Observatory                       | 15 W/m2         |  |  |  |  |
| Pantry                            | 15 W/m2         |  |  |  |  |
| Staircase                         | 15 W/m2         |  |  |  |  |
| Toilet                            | 10 W/m2         |  |  |  |  |
|                                   |                 |  |  |  |  |
| Common Area Night Light           | 50% switched on |  |  |  |  |
|                                   |                 |  |  |  |  |
| Building Air Tightness            |                 |  |  |  |  |
| Infiltration                      | 0.5 ACH         |  |  |  |  |
|                                   |                 |  |  |  |  |
| Daylight Sensor                   | None            |  |  |  |  |
|                                   |                 |  |  |  |  |
| Light Shelves                     | None            |  |  |  |  |



Alliance ildings and

# Analysis Case 1: Base Building cont.

| Air Conditioning System        |                           |
|--------------------------------|---------------------------|
| Air side                       | Constant Air Volume (CAV) |
| Chiller                        | Constant speed            |
| Chilled / Condenser Water Pump | Constant speed            |
| Duct Static Pressure           | 1300 Pa                   |
| Fan Motor Efficiency           | 61.2%                     |
| Fresh Air CO2 sensor           | None                      |
| Heat Recovery System           | None                      |
| Chilled Water Delta T          | 12 F                      |
| Chilled Water Pump Pressure    | 40m                       |
| Chilled Water Pump Efficiency  | 63%                       |
| Chiller COP                    | 5.5                       |
| Chilled Water Delta T          | 12 F                      |
| Chilled Water Pump Pressure    | 40m                       |
| Chilled Water Pump Efficiency  | 63%                       |
| Cooling Tower Efficiency       | 0.0463 kWe per HRT        |



### **Case 1: Base Building**

- BEI = 212.08 kWh/m2
- Peak Cooling Load = 7,394.06 kW



1

1

# Case 2, Case 3 and Case 4: Daylight Implementation

#### Design Improvement

• Daylight Sensor & light shelves at perimeter office areas up to 3m, 4m and 5m.

- BEI = 194 kWh/m2
- Peak cooling load = 7,182 kW





### Case 5 and Case 6: Roof Insulation

#### Design Improvement

- Case 5: 50mm roof polystyrene insulation
- Case 6: 100mm roof polystyrene insulation

- BEI = 193 kWh/m2
- Peak cooling load = 7,152 kW



### **Case 7: Wall Insulation**

#### **Design Improvement**

• 25mm rockwool insulation to external walls

- BEI = 191 kWh/m2
- Peak cooling load = 7,012 kW





### Case 8, Case 9 and Case 10: Glazing

### Design Improvement

- Case 8: All glazing single glazed, low-E. U-value = 3.806
- Case 9: Light green glazing double glazed low-E. U-value = 1.951.
- Case 10: All glazing double glazed, low-E. U-value = 1.951.

- BEI = 172 kWh/m2 (18.7% lower than base case)
- Peak cooling load = 5,923 kW (19.9% lower than base case)



### **Case 11 and Case 12: Air Tightness**

#### Design Improvement

- Case 11: Infiltration = 0.25 ACH
- Case 12: Infiltration = 0.10 ACH

- BEI = 165 kWh/m2
- Peak cooling load = 5,583 kW





### **Case 13 and Case 14: Office Lighting Power Density**

#### Design Improvement

- Optimize lighting design layout for office areas
- Case 13: 9 W/m2
- Case 14: 7 W/m2

- BEI = 154 kWh/m2
- Peak cooling load = 5,458 kW





1

7

## Case 15 and Case 16: Walkway / Lift Lobby Lighting Power Density

### Design Improvement

- Optimize lighting design layout
- Case 13: 9 W/m2
- Case 14: 7 W/m2

- BEI = 141 kWh/m2
- Peak cooling load = 5,267 kW



## Case 17: Walkway / Lift Lobby Night Light

### Design Improvement

• Reduce night time light to 33%

- BEI = 140 kWh/m2
- Peak cooling load = 5,248 kW



#### 1 9

# Analysis

### **Case 18: Toilet Lighting Power Density**

#### Design Improvement

• Reduce toilet lighting power density to 7 W/m2

- BEI = 140 kWh/m2
- Peak cooling load = 5,248 kW



### **Case 19: Toilet Occupancy Sensor**

#### Design Improvement

• Occupancy sensor to further reduce lighting to 3.5 W/m2

- BEI = 140 kWh/m2
- Peak cooling load = 5,244 kW



## **Case 20: Staircase Lighting Power Density**

### Design Improvement

Reduce staircase lighting power density from 15 W/m2 to 3 W/m2

- BEI = 135 kWh/m2
- Peak cooling load = 5,168 kW

![](_page_20_Picture_7.jpeg)

### Case 21: Air Conditioning Air Side

### Design Improvement

- Implement Variable Air Volume (VAV) system
- Variable speed AHU, VAV boxes
- Supply air regulated to occupancy needs

- BEI = 127 kWh/m2
- Peak cooling load = 5,178 kW

![](_page_21_Picture_9.jpeg)

### Case 22 and Case 23: Duct Static Pressure

#### Design Improvement

- Optimize duct size, reduce tees, bends etc.
- Case 22: Total pressure = 900 Pa
- Case 23: Total pressure = 650 Pa

- BEI = 120 kWh/m2
- Peak cooling load = 5,140 kW

![](_page_22_Picture_9.jpeg)

![](_page_22_Picture_10.jpeg)

#### 2 4

# Analysis

### Case 24 and Case 25: AHU Air Filter

#### Design Improvement

- Improve air filter for all AHUs
- Case 24: High grade air filter, total pressure = 580 Pa
- Case 25: Electronic air filter, total pressure = 550 Pa

- BEI = 114 kWh/m2
- Peak cooling load = 5,140 kW

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

### Case 26 and Case 27: Fan Efficiency

#### Design Improvement

- Improve all fan efficiency
- Case 26: air foil type fan, total efficiency = 70.2%
- Case 27: IE3 fan motor, total efficiency = 71.8%

- BEI = 113 kWh/m2
- Peak cooling load = 5,127 kW

![](_page_24_Picture_10.jpeg)

#### Case 28: CO2 Sensor

#### Design Improvement

- Introduce CO2 sensors to regulate fresh air intake based on occupants need for fresh air
- CO2 sensor set to 900 ppm

- BEI = 110 kWh/m2
- Peak cooling load = 4,973 kW

![](_page_25_Picture_9.jpeg)

### Case 29: Heat Recovery System

#### Design Improvement

• Introduce heat recovery wheel to the fresh air intake

#### <u>Results</u>

2 7

- BEI = 108 kWh/m2
- Peak cooling load = 4,924 kW

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

### Case 30 and Case 31: Chilled Water Delta T

#### Design Improvement

-Increase chilled water delta T from 12  $^\circ F$  to 16  $^\circ F$  thus decreasing chilled water flow rate

•Case 30: Supply and return temperature = 42 °F and 58 °F

•Case 31: Supply and return temperature = 44  $^{\circ}$ F and 60  $^{\circ}$ F

#### <u>Results</u>

•BEI = 106 kWh/m2

•Peak cooling load = 4,880 kW. Peak cooling load does not show much decrease from here on. Active system improvement does not have much impact on cooling load.

![](_page_27_Picture_9.jpeg)

### Case 32 and Case 33: Chilled Water Pump Pressure

#### Design Improvement

- Decrease pump pressure by optimizing pipe size, reduce bends, tees, etc.
- Case 32: Pump pressure = 30m
- Case 33: Pump pressure = 20m

- BEI = 104 kWh/m2
- Peak cooling load = 4,869 kW.

![](_page_28_Picture_9.jpeg)

### Case 34 and Case 35: Chilled Water Pump Efficiency

#### Design Improvement

- Improve pump efficiency
- Case 34: High efficiency pump, total efficiency 72%
- Case 33: IE3 motor, total efficiency = 74.4%

- BEI = 104 kWh/m2 (marginal)
- Peak cooling load = 4,868 kW.

![](_page_29_Picture_10.jpeg)

## **Case 36: Variable Primary Chilled Water Pump**

### Design Improvement

• Specify pump with VSD. Improves performance at part load

- BEI = 102 kWh/m2
- Peak cooling load = 4,866 kW.

![](_page_30_Picture_7.jpeg)

### Case 37 and Case 38: Chiller Coefficient of Performance (COP)

#### Design Improvement

- Specify high efficiency chiller
- Case 37: COP = 6.2
- Case 38: COP = 6.6

- BEI = 96 kWh/m2
- Peak cooling load = 4,807 kW.

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

### **Case 39: Variable Speed Chiller**

#### Design Improvement

• Specify chiller with VSD compressors. Gives better part load efficiency.

- BEI = 91 kWh/m2
- Peak cooling load = 4,772 kW.

![](_page_32_Picture_8.jpeg)

### Case 40: Condenser Water Delta T

#### Design Improvement

•Design a higher condenser water delta T of 12 °F hence decreasing flowrate

- •BEI = 89 kWh/m2
- •Peak cooling load = 4,772 kW.

![](_page_33_Picture_8.jpeg)

### Case 41 and Case 42: Condenser Pump Pressure

#### Design Improvement

- Decrease pump pressure by optimizing pipe size, deduce bends, tees, etc.
- Case 41: Pump pressure = 30m
- Case 42: Pump pressure = 20m

- BEI = 85 kWh/m2
- Peak cooling load = 4,772 kW.

![](_page_34_Picture_9.jpeg)

### Case 43 and Case 44: Condenser Pump Efficiency

#### Design Improvement

- Improve pump efficiency
- Case 43: High efficiency pump, total efficiency 72%
- Case 44: IE3 motor, total efficiency = 74.4%

- BEI = 84 kWh/m2
- Peak cooling load = 4,772 kW.

![](_page_35_Picture_9.jpeg)

### **Case 45: Cooling Tower Efficiency**

#### Design Improvement

 Select cooling tower with high efficiency. Efficiency decreased form 0.0463 kW/HRT to 0.0275 kW/HRT

- BEI = 82 kWh/m2
- Peak cooling load = 4,772 kW.

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

## **Case 46: Variable Speed Cooling Tower**

#### Design Improvement

• Specifying a cooling tower with variable speed fan

- BEI = 82 kWh/m2
- Peak cooling load = 4,772 kW.

![](_page_37_Picture_7.jpeg)

### **Case 47: Oversized Cooling Tower**

#### Design Improvement

•Design return temperature from 29.4  $^\circ$ C to 28.5  $^\circ$ C/95 or 94 F

- •BEI = 82 kWh/m2
- •Peak cooling load = 4,772 kW.

![](_page_38_Picture_8.jpeg)

### **Case 48: Faulty Daylight Sensors**

#### Design Improvement

• This case does not improve on the design. Considers situation when daylight sensors are not functioning. Hence all office lights are switched on.

- BEI = 89 kWh/m2
- Peak cooling load = 4,862 kW

![](_page_39_Picture_8.jpeg)

# Conclusion

- Each small improvement contribute to substantial overall savings.
  - Base building BEI = 212.08 kWh/m2
  - Final BEI (Case 47) = 82.25 kWh/m2. A decrease of 61% (building overall)
- Energy by owner.
  - Base building energy = 5,717 MWh (RM 2,001,168) per year.
  - Final energy (Case 47) = 1,510 MWh (RM 528,666) per year. A decrease of 73% (owner's running cost)
- Peak air cond load.
  - Base building load = 7,394 kW
  - Final load (Case 48) = 4,862 kW. A decrease of 34% (capital cost reduction)

![](_page_40_Picture_10.jpeg)

ORLD

ORLD Sustainable Built Environment Conference

# Conclusion

Building Energy Intensity (BEI) of each Case

CONSTRUCTION

建浩業議會

INDUSTRY COUNCIL

HKGBC

![](_page_41_Figure_3.jpeg)

Sustainable Buildings and Climate Initiative

**创 iiSBE** 

obal Alliance

diag's and

# Conclusion

Peak Cooling Load of each Case

![](_page_42_Figure_2.jpeg)

![](_page_42_Picture_3.jpeg)

# Summary

- Achieving very high energy efficiency requires the building to capitalize on every opportunity that increases efficiency on the building.
  - Each energy efficiency feature provides savings in the region of 1%~2% gains.
- Peak cooling load reduction is even smaller per feature, ranging from 0.5% ~ 1%.
  - But a combination of features will provide up to 34% peak cooling load reduction.

![](_page_43_Picture_5.jpeg)

# Thank you

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_3.jpeg)

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

![](_page_44_Picture_6.jpeg)

![](_page_44_Picture_7.jpeg)