Thermal Performance of Prefabricated Modular Buildings in Australia: A Baseline Study

Sareh Naji¹, Valentin Ployet¹, Masa Noguchi², Lu Aye¹

¹Renewable Energy and Energy Efficiency Group ²The Faculty of Architecture, Building and Planning The University of Melbourne, Victoria 3010 Australia

2 of 16

Contents

- Background
- Aim & Objectives

Organisers:

ONSTRUCTION

- Method
- Results
- Conclusions

(https://www.dezeen.com/2015/10/21/narchitects-my-micro-ny-modular-residential-tower-affordable-housing-new-york-usa-adapt-nyc/)

International Co-owners:

Prefabricated Buildings Offer

- benefits to construction industry with reduction in time, cost and waste management.
- Improvements in environmental performance and building overall quality

3 of 16

(http://www.cimc-mbs.com/wm/index_115.aspx)

Knowledge Gaps

- There is lack of knowledge on current baseline performance of prefabricated buildings.
- Thermal performance of modular houses is not well documented in the literature.
- The effects of building size and envelope on thermal performance of modular houses is not well documented.

Aim

 To investigate the thermal performance of four prefabricated modular buildings in Melbourne, Australia

Objectives

- To investigate the effects of building size on thermal performance
- To investigate the effects of envelope parameters on thermal performance

Method

- OpenStudio plugins in Sketchup environment were applied.
- EnergyPlus engine was used for the simulations.
- Effects of window to wall ratio and floor area on cooling and heating loads were investigated.

Buildings Investigated

Global Alliance

Buildings and

Fixed Parameters

Category	ltem	Value			
Location, Melbourne, Australia	Latitude [deg]	-37.817			
	Longitude [deg]	144.967			
	Time Zone [h]	10			
	Elevation above sea level [m]	38			
	Site ground temperature [°C]	18			
Window glazing	U-Factor [W m ⁻² K ⁻¹]	2.10			
	Solar transmittance [-]	0.237			
Thermostat settings	Heating set point	Day:21°C, Night:18°C			
	Cooling set point	24°C			
Space infiltration rate	nce infiltration rate Flow per space floor area [ms ⁻¹]				
Design ventilation rate	Outdoor Air flow per floor area [ms ⁻¹]	0.0003			
Droanisers: International Co-owners:					

Alliance Idings and

Wall Components

Building Areas

While 92% of the spaces in the Wattle building are

conditioned, this percentage decreases to 85% in the Outback.

Window/wall Ratio

Regarding the fact that Wattle is the smallest building, the high value of window to wall ratio can be justified.

Annual Heating and Cooling load

CONSTRUCTION INDUSTRY COUNCIL 建造業議會 International Co-owners:

12 of 16

Heating and Cooling load per unit floor area^{13 of 16}

CONSTRUCTION INDUSTRY COUNCIL 建造業議會

Organisers:

International Co-owners:

Annual Electricity Consumption

Organisers:

Sustainable Built Environment Con

ONSTRUCTION

NDUSTRY COUNCIL

HKGBC

14 of 16

Esper

A

Building	Heat pump model	Heating (kW)	Heating COP	Cooling (kW)	Cooling COP
Wattle	Daikin FFQ25C2 / RXS25K3	3.2	4.00	2.5	4.46
Banksia	Daikin FTXM50P / RXM50P	6.0	4.23	5.0	4.24
Territory	Daikin FTXM60P / RXM60P	7.0	4.07	6.0	3.87
Outback	Daikin FTXS71L / RXS71L	8.0	3.67	7.1	3.41

International Co-owners:

GI IISBE

Sustainable Buildings and Climate Initiative

15 of 16

Conclusions

- In this paper energy performance simulations of four prefabricated modular houses have been carried out using EnergyPlus interface with OpenStudio.
- The results reveal that heating and cooling load of the buildings highly depend on both floor area and window to wall ratio.
- While the energy required for heating showed increase in buildings with larger floor area, the cooling load followed a different pattern that indicated the impact of envelope parameters.
- The heating and cooling energy per floor area show a decreasing trend with increase of floor area.
- Results also indicate that window to wall ratio has higher impact on cooling load compared to heating load.

16 of 16

Thank you

International Co-owners: SBF

dings and