

Study of Human Embodied Energy for Masonry Work during Building Construction

L. Pinky Devi and Sivakumar Palaniappan

Building Technology and Construction Management

Department of Civil Engineering Indian Institute of Technology Madras, Chennai, INDIA

International Co-owners

Objectives and Scope

- To determine the energy use by human workforce during construction.
- To determine the relation between human energy and non-renewable energy used for construction processes.
- The scope is limited to masonry work of high-rise residential building construction.

Case Study: Masonry work

- Duration of data collection: 16 months
- Project type: high-rise residential building construction
- No of blocks(buildings): 5
- Material hoist: One per block
- Total quantity of work: 4441 cu.m.

International Co-owners

Quantity of masonry work completed

Masonry work completed (cu.m.) Average: 278 cu.m. 11 12 13 14 15

Total quantity of work: 4441 cu.m.

Month

International Co-owners:

MIISBE

Organisers:

INSTRUCTION

IDUSTRY COUNCI

Schedule of manpower (human workforce)

Months	Number of Masons	Number of male helpers	Number of female helpers
1	89	135	119
2	252	384	327
3	321	487	418
4	259	399	338
5	233	355	303
6	319	484	417
7	317	479	416
8	401	610	527
9	457	695	600
10	451	682	592
11	541	817	701
12	359	541	471
13	302	459	397
14	162	250	215
15	229	350	292
16	230	350	294
Total	4922	7477	6427

Organisers:

International Co-owners:

Methodology

Methodology

Non renewable energy used for lifting (material hoist)

= No. of lift cycles x kWh/lift cycle

Gender	Age	BMR (MJ/day)	Avg. weight (kg)	BMR (MJ/day)
Male	18-30	0.063 W + 2.896	62.5	6.83
Female	18-30	0.062 W + 2.036	57.5	5.60

Food and Agriculture Organization, 2001

International Co-owners:

Methodology

Construction Activity	PAR
Pour Concrete (Foundation)	4.81
Brick Laying	4.81
Transport (Walk with 25-30 kg)	3.9
Place cement mortar	3.3
Rebar cutting and bending	3.3
Making Bricks	3

Food and Agriculture Organization, 2001

Energy Use: Manufacturing and Transport

ORLD Sustainable Built Environment Conforence

HKGBC

Sustainable Buildings

Energy use for construction equipment (material hoist)

Description	Quantity (cu.m.)	Energy use (kWh/cu.m.)	Energy use (MJ)
Masonry Block Quantity (75%)	3330.7	0.05	2038
Cement Mortar Quantity (25%)	1110.3	0.15	2038
Total Lifting Energy			4076

Energy : 0.92 MJ/cu.m.

Energy use (human workforce)

Comparison of energy use: Material hoist and human workforce

Material Hoist: 0.92 MJ/cu.m. [3%]

Human workforce: 29 MJ/cu.m. [97%]

Comparison of energy use: Material hoist and human workforce

Sustainable Buildings

Comparison of energy use for transport, lifting (material hoist) and human resources

• Human energy is about 1/3 of the total energy used for on-site construction for masonry work.

• The relation between human energy and onsite construction energy is influenced by the degree of mechanization and manpower used.

 Limitation: Human energy calculation is based upon the published BMR and PAR in literature. These parameters may vary for construction workforce in India.

Thank you

