## The District Cooling System (DCS) at the Kai Tak Development

Ir LO Siu Kuen Senior Engineer Electrical and Mechanical Services Department Government of the HKSAR











#### Contents

- The Kai Tak DCS
- Benefits of the DCS
- Current Status of Kai Tak DCS
- DCS Services Charges
- Conclusion



#### The Kai Tak DCS



## District Cooling System (DCS)



## The Kai Tak DCS

- First-of-its-kind DCS in HK
- Total area over 320 hectares
- Total AC floor area 1.73 million m<sup>2</sup>
- 284 megawatt of refrigeration (MWr) AC demand





#### The Kai Tak DCS



#### The DCS Plants





#### The North Plant located at Shing Kai Road

Organisers:

The South Plant located at underground of former-runway of Kai Tak Airport









#### Bank of Chillers in DCS Plants





#### The installed 1.4MWr and 4.3MWr Chillers at the North Plant

The installed 17.5MWr Chiller at the South Plant



#### **Chilled Water Piping Network**





#### 3-Pipe System of Underground Chilled Water Piping in Open Trench

Organisers

#### DCS Pipes Laying inside the Underground Tunnel









## **Tunnel Formed by Pipejacking**



#### Tunnel Formed by Precast Concrete Pipes

#### Condition of Completed Tunnel













#### Sub-sea Construction





Organisers: ONSTRUCTION NDUSTRY COUNCIL









#### Sub-sea Construction Sequence



#### **DCS** Pipes Protection

 Factory-prefabricated insulation with 65mm thick polyurethane and external jacket with high density polyethylene (HDPE)

Organisers:

65mm <sup>7</sup> polyurethane



International Co-owners:

Sustainable Buildings UNEP and Climate Initiative

HDPE



#### **Consumer Substation**

At primary chilled water side:

- Supply Temperature = 5°C
- Return Temperature = 13°C



Heat Exchangers in DCS Substation

At secondary chilled water side:

- Supply Temperature = 6°C
- Return Temperature = 14°C



**Energy Meter** 









#### **Energy Management and Monitoring**

- Automatic computerised system
- District Cooling Instrumentation, Control and Communication Systems (DCICCS)



**DCS Control Room** 





Most energy efficient centralized air-conditioning system

- Kai Tak DCS use seawater for heat rejection, consume 35% less electricity
- Annual saving of about 85 million kWh in electricity consumption



Cooled

Cooling System



Mitigate Heat Island Effect

 Heat rejection no longer generates from separate airconditioning systems





- Reduction in upfront capital cost for chiller plant installation
- More flexible in building design
- Reduce noise, vibration and heat
- More adaptable to varying demand

















#### Current Status of Kai Tak DCS







#### **DCS Services Charges**



## **Charging Principles**

- Costs comparable with water-cooled AC systems using cooling towers
- Cost recovery in 30 years
- Price stability
- Simple charging mechanism



#### **District Cooling Services Ordinance & Charging Arrangement**

- "District Cooling Services Ordinance (Cap. 624)" was passed by LegCo and enacted in March 2015
- Mainly two charges:

Capacity charge

Capital costs and O&M costs

Consumption charge *igentation* Cost that vary with actual consumption



#### Adjustment Mechanism

- Capacity charge rate to be adjusted annually based on the Composite Consumer Price Index (CCPI)
- Consumption charge rate to be adjusted annually taking into account change in electricity tariff rate



# DCS in New Development Areas (NDAs)

As stated in the 2017 Policy Address, HK Government is considering the provision of DCS in NDAs, such as:

- Topside development at the Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities
- Tung Chung New Town Extension



#### Conclusion



### Conclusion

- DCS is the most energy efficient centralized air-conditioning system suitable to KTD and NDAs
- Annual saving of 85 million kWh in KTD DCS
- Mitigate the heat-island-effect
- Enhance flexibility for building design and reduce noise, vibration and heat



#### Thank you













