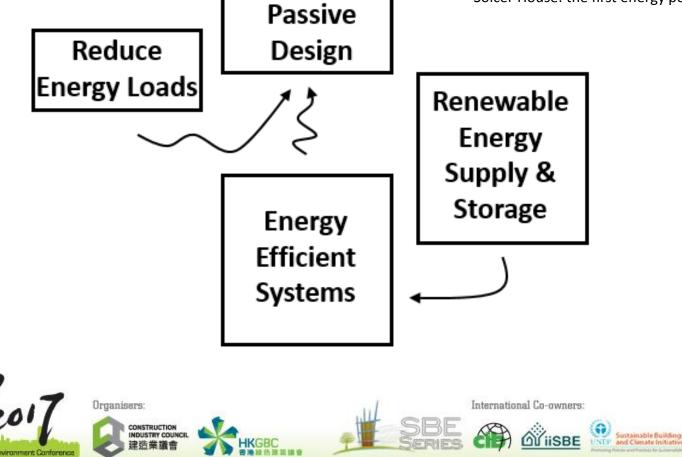
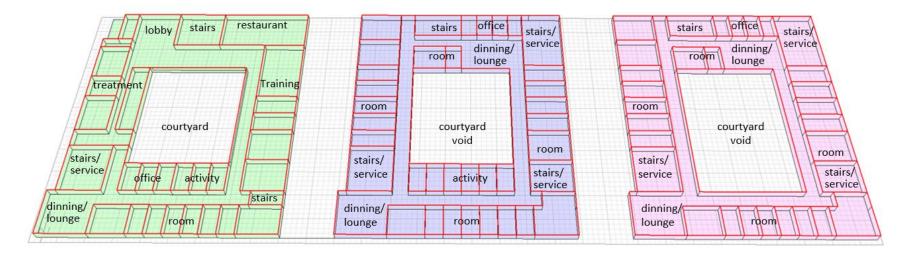
Nearly Zero-Energy Care Home Design in Cold Climate in China

Dr Shan Shan Hou **Prof Phil Jones** Welsh School of Architecture, Cardiff University, UK **Prof Yanmin Zhou** Architecture School, Tsinghua University, China



A systems approach



Solcer House: the first energy positive house in Wales

Typical care home design and current practice

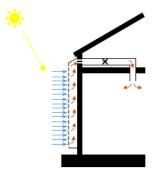
Table 4: Simulation input data for current practice						
Internal gains (W/m ²)			Ventilation	Fabric efficiency U-value (W/m ² /K)		
Rooms	Lighting	Plug load	Fresh air	External wall	0.50	
Lobby	9.0	9.5	10L/P/s	Roof	0.45	
Office	9.0	15.0	10L/P/s	Ground floor	0.50	
Ward room	5.0	6.0	10L/P/s	Glazing	2.7	
Exam/ treatment	15.0	30.0	10L/P/s	Glazing	G=52%	
Dinning/ lounge	6.9	3.0	10L/P/s		Deiler officiency - 88%	
Kitchen	15.9	50.0	30L/P/s	Systems	Boiler efficiency= 88% Cooling COP=3.2	
Circulation area	7.0	0	10L/P/s		Cooling COP=3.2	

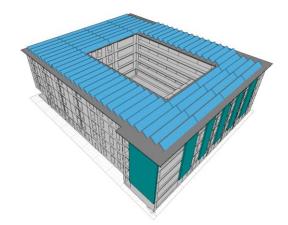
Notes:

• The building is used 7 days a week, 24 hours a day;

- The designed room temperature used in the simulation is 21 (winter) to 26°C (summer).
- The occupant's load is based on the design.
- An infiltration rate at 10m³/h/m² @50pa is applied, based on the minimum requirement of British Building Regulation Part L 2A.

Organisers:


construction INDUSTRY COUNCIL 建造業議會 International Co-owners:



Near zero carbon care home design

Transpired Solar Collector

Integrated PV roof

Table 5 Simulation input data for nearly zero-energy design

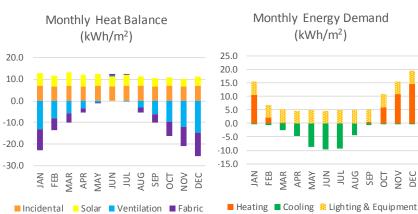
Table 5 Sindlation input data for hearly zero-energy design						
Internal gains (W/m²)			Ventilation	Fabric efficiency U-value (W/m ² /K)		
Rooms	Lighting	Plug load	Fresh air	External wall	0.26*/ 0.15^	
Lobby	5.6	4.0*/ 1.5^	10L/P/s	Roof	0.18*/ 0.15^	
Office	9.0	7.0*/ 3.0^	10L/P/s	Ground floor	0.22*/ 0.15^	
Ward room	2.9	4.0*/ 2.0^	10L/P/s	Glazing	1.60*/ 0.90^	
Exam/ treatment	11.6	20.0*/ 10.0^	10L/P/s	Glazing G=40%*/ 15%^		
Dinning/ lounge	4.6	2.0*/ 1.0^	10L/P/s	Systems		
Kitchen	11.6	40.0*/ 30.0^	30L/P/s	 UTSCs (221.8 m²) MVHR at 85% efficiency 		
Circulation area	4.6	0/0	10L/P/s	 PV (1347.5m²), at 17% efficiency 		

Notes:

- The lighting and plug load are based on the SIA 2024.
- The occupant's load is the same as the current practice, based on the design.
- The infiltration rate is (3m³/h/m² @50pa) are based on the recipe data from the British Building Regulation Part L 2A.
- * for good practice, ^ for best practice

Organisers:

International Co-owners:



Simulation results

HTB2 (Heat Transfer in Buildings V2) has been used to conduct the building energy simulation.

Step 2. Passive design (89.8kWh/m²/year)

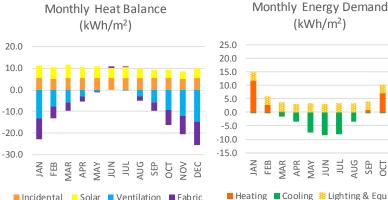
Monthly Heat Balance

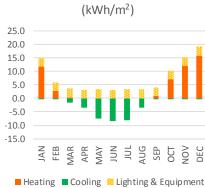
 (kWh/m^2)

MAR APR MAY JUN JUL

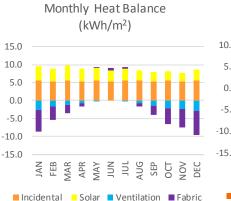
AUG SEP

Solar Ventilation Fabric

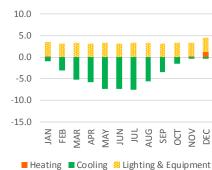

OCT VOV DEC


Organisers:

ONSTRUCTION NDUSTRY COUNCIL


Current practice (121.8kWh/m²/year)

Step 1. Reduced energy loads (107.6kWh/m²/year)



Step 3. Efficient HVAC systems (51.7kWh/m²/year)

Monthly Energy Demand (kWh/m^2)

20.0

10.0

0.0

-10.0


-20.0

-30.0

JAN FEB

Incidental

Monthly Energy Demand (kWh/m^2)

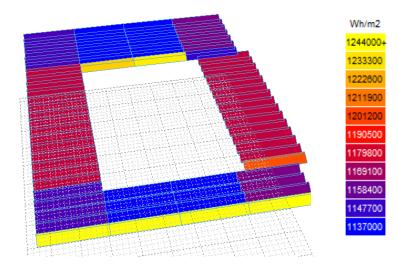
Simulation results (continue)

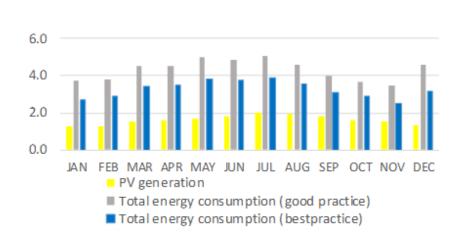
Cases	Annual energy consumption(kWh/m ²)		
	Heating	51.1	
_	Cooling	13.0	
Base case: current practice	Lighting & equipment	57.7	
	Total	121.8	
	Heating	57.9	
Step 1: Reduced energy demand	Cooling	10.6	
(good)	Lighting & equipment	39.1	
(8000)	Total	107.6	
Stop 1. Roducod oporgu domord	Heating	61.2	
Step 1: Reduced energy demand	Cooling	9.7	
(best)	Lighting & equipment	30.7	
(Dest)	Total	101.6	
Chan 2. Dessive design	Heating	40.4	
Step 2: Passive design	Cooling	10.3	
(rood)	Lighting & equipment	39.1	
(good)	Total	89.8	
	Heating	42.2	
Step 2: Passive design	Cooling	7.0	
(best)	Lighting & equipment	30.7	
(Dest)	Total	79.9	
	Heating	1.7	
Step 3: Efficient HVAC systems	Cooling	10.9	
(good)	Lighting & equipment	39.1	
(good)	Total	51.7	
Stop 2: Efficient UV/AC systems	Heating	0.6	
Step 3: Efficient HVAC systems	Cooling	7.9	
(best)	Lighting & equipment	30.7	
(Dest)	Total	39.2	

Organisers:

HKGBC

SB





Simulation results

Sketchup+virvil plugin has been used to predict the potential of PV systems.

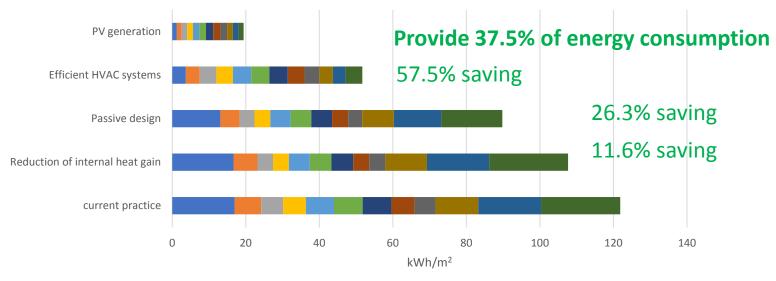
Step 4. Renewable energy supply (45.6kWh/m²/year)

Monthly energy generation vs energy consumption

Goof practice: 37.5%

Best practice: 49.5%

Organisers:


NASTRUCTION NOUSTRY COUNCIL 書造業議會 International Co-owners:

Study conclusion

■JAN ■FEB ■MAR ■APR ■MAY ■JUN ■JUL ■AUG ■SEP ■OCT ■NOV ■DEC

Total energy consumption (heating, cooling, lighting and equipment) has been reduced from 121.8kWh/m²/year to 51.7kWh/m²/year.

Besides the benefit from energy saving, other benefits of the proposed design can be recognized, including:

- Flexible room layout due to the absence of radiators.
- Reduction of the risks of exposure to hot radiator surfaces.
- Improved ventilation to provide good indoor air quality.

Thank you

Dr Shan Shan Hou

e-mail: hous1@cardiff.ac.uk

web: http://www.cardiff.ac.uk/architecture/

